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Abstract. For a one-dimensional Hubbard model with a half-filled band and one extra 
hole the single-hole Green function is calculated analytically; the spectrum analysis shows 
that the N electrons tend to move so as to form identical and consecutive packets to satisfy 
rules fixed by arithmetical properties of the integer N. 

Investigations of the Hubbard model have been numerous, but exact results are rare 
though often enlightening [ 1-31 and unattainable by approximate methods, as in the 
present exact spectrum analysis of a one-dimensional Hubbard model with a half-filled 
band and one extra hole in the strong correlation limit ( U  = a). This model was 
considered long ago by Nagaoka [l], who proved some exact results for the ground 
state of 3~ lattices, whereas the hole propagation has been studied [4,5] by approximate 
Green function calculations. Moreover, the one-dimensional Hubbard model is exactly 
solvable [2] and even exactly integrable [6], and some exact asymptotic results have 
been obtained recently [7] for the infinite chain. But the size-dependent properties 
are of interest from a theoretical point of view [8], and also for extrapolation to the 
bulk limit Monte Carlo results on finite systems; moreover fragmented chains play a 
role in some high-temperature superconductors [9]. However, in the present work, 
although the number of electrons indeed plays a usual role through its size, the 
surprising main result appears to be that the behaviour of the N electrons is entirely 
determined by the arithmetical properties of the integer N and so is in fact ruled by 
the elementary theory of numbers. 

Considering a Hubbard chain of N +  1 atoms and N electrons with strong intra- 
atomic Coulomb repulsion ( U = a) and assuming periodic boundary conditions and 
N odd, in the basis of states 

lid = (-1)1co<7(, ' . ' c ,~ - l , , , , - , c~+ l ,~ , ,+~  . . * CN,,J 

where i and U denote respectively the site where the hole is located and the spin's 
configuration U = (a , ,  a2,  . . . , aN 1, a, being the spin at site i + a, the Hamiltonian 

H = t : Cr,ct+I,,+ c;+l,uct<r 
,=0,u=t ,J 

has the matrix representation 

H = - 1 (  "+I @ G ,  -t m GI+ I @ GG') 
where the double periodicity of the model is properly taken into account by a ( N  + 1) x 
( N  + 1) cyclic matrix 

( m,, = 6 ( i  - i') mod( N + 1) i, i ' = O ,  1 , .  .., N 
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and a 2N x 2 N  spin’s cyclic permutation matrix 

( GN)urr.= a (  U” - a‘) where S ( k ) = l  (o r0 )  if k = O  (or ZO). 

The pth power of these matrices have diagonal elements in the form 
N 

( m L + l ) g ,  = ( N +  1I-I C waNptl w, = e x p ( 2 i ~ / n )  (2) 
a =o 

N - l  d 

(GL)udud = N - ’  C w2‘wpN” 
0-0 / = 1  

( 3 )  

where, for dlN (means d divides N ) ,  a d  denotes a N-tuple which is partitioned in 
exactly d identical and consecutive N/d-tuples; if that is not the case, the notation 
still holds since aI can be used to denote such vectors; and likewise the two ferromag- 
netic configurations will be denoted by uN. 

With these notations and by using ( l ) ,  (2) and (3) we readily obtain 

from which we deduce for the one-particle Green function R(z)  = (z  - H ) - ’ ,  through 
its power series, the diagonal elements in the form 

and noting that card{ad} = 2N’d and that for a correct counting of the diagonal elements 
the condition gcd(1, d )  = 1 must be imposed in the summations over 1 in (3) ,  (4) and 
( 5 )  the trace reads 

-1 N N - l  

Tr R(z)  = N-I 1 A p ( N ,  2)[ z+2t  COS 2n(*+$)] 
o=o  p = o  

in terms of the arithmetical polynomials [ 101 

A p ( N ,  x)  = c c ( P ,  d)xNId  
d l N  

whose coefficients c ( p ,  d )  = C l S / S d , g c d ( / . d ) = l  w2‘ are Ramanujan sums [11]. 

N (  N + 1 )  energy eigenvalues 
The eigenspectrum follows from the properties of R ( z )  whose poles are the 

Eop = -2t COS 2 ~ ( ~ + ~ )  a=0,1, ..., N P=O, l ,  . . . ,  N - 1  
N + l  N (7)  

that increase as (a, P )  = (O,O), (1,0),  (0, l ) ,  (2, O), (1, l ) ,  (0,2), . . . . There are ( N +  
1)2N eigenstates k = 1 ,2 , .  . . , mmP and the degeneracy of an eigenenergy E,, is 
given by the multiplicity 

m,, = Tr Res R (  Eap) = N-IA,  ( N ,  2) (8)  

which is, as required, an integer by generalisation of Fermat’s Little Theorem [ 101. 
Let us now define a ‘density’ of eigenstates per configuration 

N N - l  

n a d ( E ) = - Y 1  Im(iadIR(E+iO)liad)= a Z t 6 ( E - E a p )  (9) 
a = O  p = O  
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where the weight that the eigenstates of energy E,, have on a given configuration ud 
is 

Discussion. The exact N-particle energies E,, given by (7 )  are map-fold degnerate, 
and from (8)  and (10) it appears that both multiplicity and ‘density’ of states per 
configuration are ruled by the factorisation of the integer N, which thereby controls 
the thermodynamic behaviour and the collective motion of the N electrons. 

ZfN is prime, its only divisors are 1 and N, whence map = N-’[2N +2c(p, N ) ] ;  the 
p = 0 levels are the most degenerate with ma0 = N - 1 ( 2 N  - 2 N  - 2), whereas ma I = 
N - 1 ( 2 N  -2),  , . . . The ferromagnetic configurations of weight aoN = ( N +  l)-IS(p) are 
only allowed for p = 0 eigenstates (notably the ground state), where they overcome 
the other configurations of weight a,, = N - ’ (  N + l)-I.  

I f N  is composite, the degeneracy ( 8 )  of the /? = 0 states are given by the arithmetical 
polynomial A,(N,  2) whose coefficients are the Euler functions 4 ( d ) ,  i.e. the number 
of integers not greater than and prime to d. For p = 1,  the coefficients of the arithmetical 
polynomial A , ( N ,  2) are merely Mobius functions [ l l ]  p ( d )  and the multiplicity of 
those eigenstates depends mainly upon the presence of squared factors in the prime 
decomposition of d. For example, if N = p r  with p prime, we have simply m,,  = 
~ - ‘ ( 2 ~  -2”p). From (10) we infer that for p = O  eigenstates all configurations u d  

are allowed, the N electrons tend to propagate in d packets having the same spin 
configuration with greater probability weight for larger d and the ferromagnetic 
configuration has the maximum weight a:: = ( N +  I ) - ’ .  Concerning p # 0 eigenstates, 
the necessary and sufficient condition for packets of N / d  electrons to propagate is 
that d l N  and d ( p ,  so the size of the predominating packet is N/gcd(N, p ) .  Notice 
that the ferromagnetic configurations are forbidden for those excited states. 

So by an analytic calculation of the Green function and spectrum, we have elucidated 
the spin configuration dependence of the kinetic energy of a simple hole in a strongly 
correlated one-dimensional Hubbard model and shown that electrons tend to move 
forming identical and consecutive packets. The different allowed correlated spin 
motions compete obeying strict rules with probability weights fixed by the arithmetical 
properties of the number of electrons; so that in this packing scheme ferromagnetically 
correlated states appears to be only special cases not always present nor even favoured 
in every energy eigenctates. Moreover, eigenstates have degeneracies that can also be 
taken into account correctly in the derivation of thermodynamic properties, which thus 
obey arithmetic rules just as well; those results will be reported elsewhere. In any 
case, difficult questions remain unanswered concerning how those subtle features of 
the model carry over to weaker-coupling regions and higher dimensions. 
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